

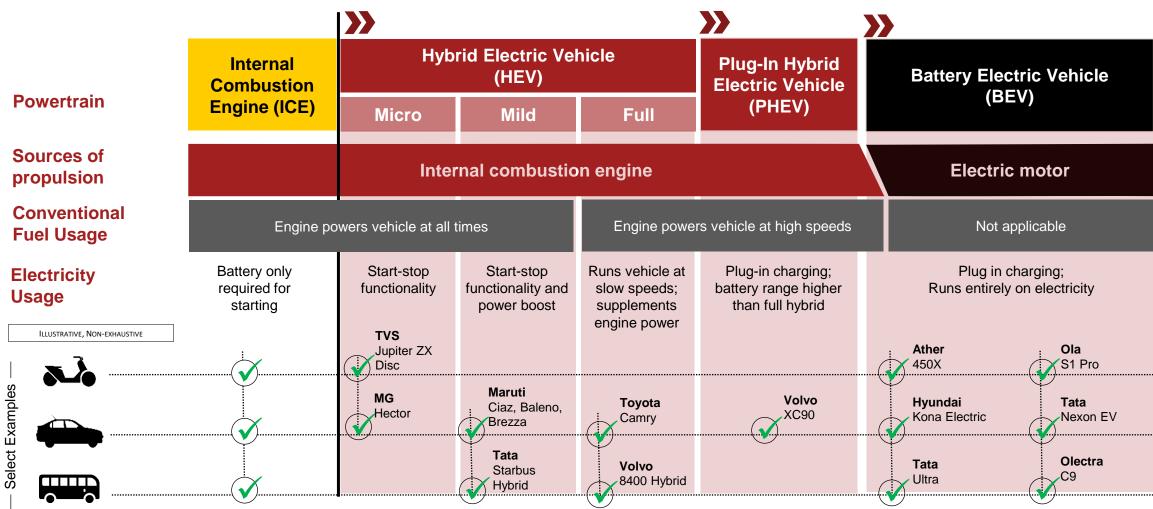
Contents

01

Overview of the Global EV market

02

Overview of the Indian EV market


03

Opportunitiess for auto-component manufacturers

04


Conclusion & key takeaways

Several power train technologies co-exist across xEV continuum and across vehicle segments

Note: Some studies define another intermediate segment: Range Extended Electric Vehicle (REEV) which use a generator to charge the battery, plug-in charging a& are powered by electric motor Source: Company websites, PwC Research & Analysis

The global xEV market was valued at ~\$385 Bn in 2022*; BEVs projected to have the highest growth (5X) by 2028 (value terms)

Global xEV market to grow at a CAGR of~ 23% between 2022 - 2028 period

Factors making BEVs attractive

Stringent Environmental Regulations

- USA American Renewable Energy Act Of 2021
- China PRC Energy Law Of 2022

Volatile Oil Prices

Average VIX (Volatility Index) for crude oil prices;

- 2017-2019 *31.043%*
- 2021-2022 (YTD) 44.21%

Policy Orientation

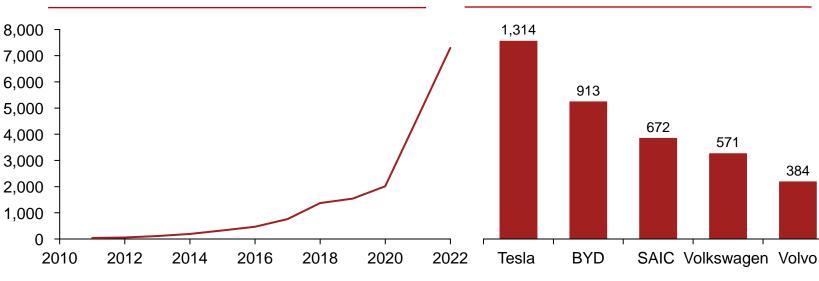
- USA Inflation Reduction Act Of 2022 (Amendment in IRC 30D)
- China New Energy Automobile Industry Plan (2021-2035)

Lower Maintenance Costs

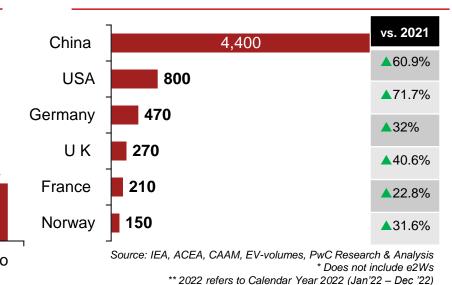
- Fewer moving parts in electric powertrain
- 40% less TCO for EVs vs. ICE vehicles

Improving Product Quality

New technologies coming to the fray;


- Smart EV Charging
- Smart Battery Management
- Vehicle-to-Everything (V2X)

* 2022 refers to Calendar Year 202 (Jan '22 – Dec '22)

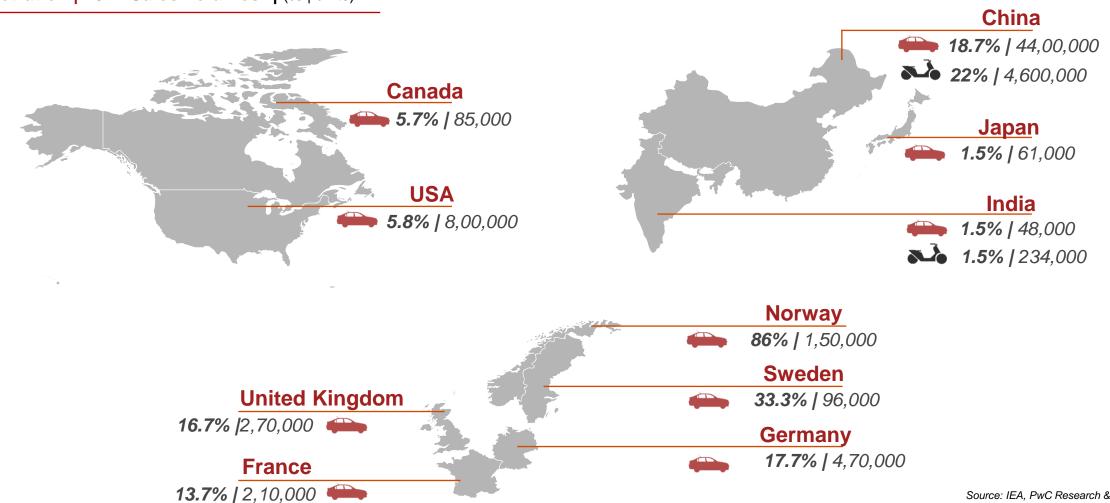

Source: Fortune Business Insights, Business Insider, US DoE, PwC Research & Analysis

Global light vehicle* BEV sales grew ~57% in 2022**; *China accounted for over half of the sales*

Global BEV Sales | ('000 units)

Top Selling OEMs | BEVs: 2022* ('000 units)

Top EV Markets | BEVs: 2022* ('000 units)


- Lithium-ion battery pack prices saw a 6% decrease from 2020 prices; weighted average price at \$132/kWh
- Strong push on charging infrastructure, & ban on new ICE car sales from 2035 by select EU nations, gave a strong push to e-mobility
- Volkswagen has a 10% market share globally – set to invest \$10.6 billion to build electric vehicles and batteries in Spain
- Hyundai announced new electrification strategy for 2030 – 1.87 Mn BEV sales annually, 17 new BEV models

- China witnessed a strong growth in BEV sales on the back of government support through subsidies & strong charging infrastructure growth
- European nations such as Norway and Iceland possess the highest EV market penetration – 65% and 45% of all new vehicle sales are EVs

*Light vehicles do not include e-2W and e-3W

While major global auto markets' EV penetration rose in 2022, European markets lead sales penetration levels among the top nations

Penetration | 2022 Sales Volumes* | (% | units)

Source: IEA, PwC Research & Analysis

*Sales numbers for all geographies for calendar year 2022; For China and India – 2W numbers are for xEVs; rest are BEV numbers

Strong government support seen among nations with high sales volume/penetration of Battery Electric vehicles (BEVs)

	*: China	United States	Germany	Norway
BEVs Sold* (2022**, '000 units)	4400	800	470	150
EV Charging Points (2022**)	1,760,000	1,28,000	77,000	24,100
EV Policy	NEV Subsidy Scheme – \$14.8 bn in subsidies to buyers – scheme extended till end of 2022 Focus on charging infra: - 2013 – Uniform charging standards - 2022 – National Development and Reform Commission guidelines on expanding charging infrastructure to every county Target: 40% new vehicle sales to be electric by 2030	 CAFÉ – Fuel economy norms, revised in March 2020 NEVI program – \$5 billion to build EV charging infrastructure across the USA from FY22-26 EVs4ALL – \$45 million for development of advanced batteries for EVs w.e.f April '22 100% zero-emission govt. vehicle acquisitions by 2035, including 100% light-duty acquisitions by 2027 	 Offers high end-customer subsidies: €6k for EVs priced under €40k €5k for EVs priced over €40k National-level charging incentives: Private – €900 incentive per charging point Public – €300 mn in total incentives, subsidies upto 80% of total cost for purchase and installation w.e.f FY22 Target: 10 mn EVs and 1 mn public charging points on road by 2030 	 Strategy –Provide tax breaks, not big incentives & grants; No purchase/import tax No annual road tax (1996-2021) No VAT 20-50% subsidy on total cost of EVSE purchase and installation, up to €450 per charging point Target: All new car sales by 2025 to be zero-emission

Source: IEA, PwC Research & Analysis

* Does not include e2Ws

** 2022 refers to Calendar Year 2022 (Jan'22 – Dec '22)

Case study – China has regularly set ambitious EV targets backed by financial incentives, tightening of fuel norms & investment in charging infrastructure

Highlights of EV policies

Focus Areas

Expansion of charging infrastructure, with focus on **battery swapping**

Financial incentives on the purchase and manufacture of EVs

Introduction of EVs in **public and commercial fleets** (buses, taxis, delivery vehicles)

Fuel Norms

Initial push towards electrification was through tightening of fuel economy standards

2017: **4.6L/100 km (WLTP) or 4.0L/100 km (NEDC)** by 2025 for all PVs

2018: **41.6L/ 100km** for all HCVs registered after July 2021

Targets

By 2030:

- 40% new sales to be electric
- 50 million EV holdings
- 200 TWh demand for EV charging

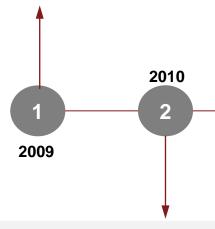
Presence of charging infrastructure for over 20 million EVs by 2025

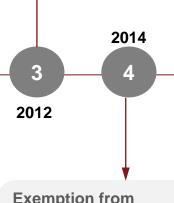
Average electricity consumption of BEVs ≤ 12kWh/100 km by 2025

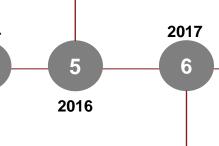
Source: IEA, PwC Research & Analysis

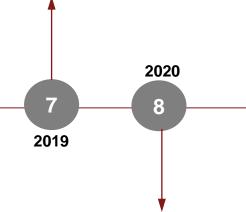
Case study – The Chinese govt. has pivoted from providing expensive customer subsidies to enforcing EV manufacturing mandates on OEMs to drive EV adoption

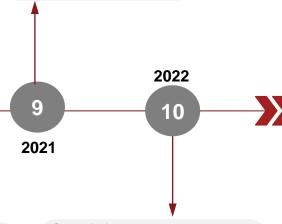
Timeline of Policies


Ten Cities Thousand Vehicles program launched with goal to reach 1,000 xEVs annually over next three years


Waiver of 10% on vehicle purchase tax for electric vehicles till end of 2017


Ambition: At least 50% of vehicle fleets of central and state governments, as well as public organizations, to be electric


Manufacturer Mandate


Zero-emission Vehicle Mandate: 10% of all cars manufactured/imported by OEMs to be electric Criteria raised to 12% in 2020 Ambition set for 72% share of xEVs in national urban public transport and 20% in logistics distribution by 2025

China Pilot subsidy program launched which offered subsidies up to \$7,320 on PHEV and \$8,800 on other EV purchases

Exemption from annual vehicle tax on New Energy Vehicles, and purchase tax on **NEV** buses

Dual Credit Policy that incentivizes OEMs producing in China to have a certain minimum percentage of their fleets be xEVs

Change in subsidy program, large incentives done away in favour of long driving range, better fuel economy and highdensity batteries

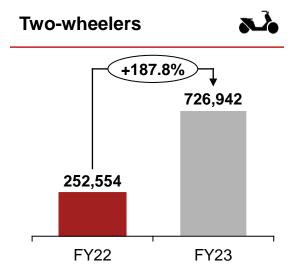
Subsidies reduced by 30%. Extension of EV sales tax exemption till 2023.

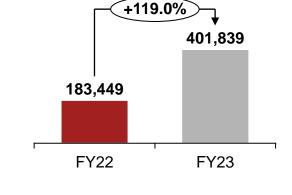
Goal of having 40 percent of the vehicles sold in the country be EVs by 2030

Source: IEA, PwC Research & Analysis

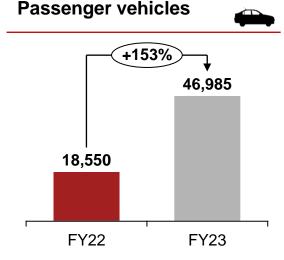
Contents

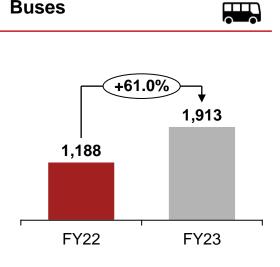
Overview of the Global EV market


Overview of the Indian EV market

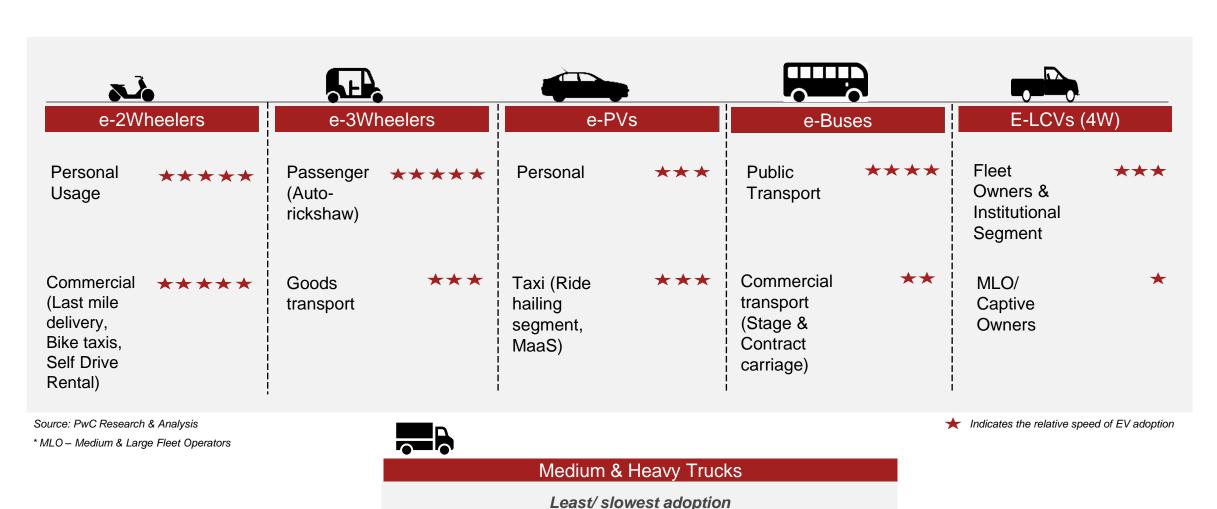

Opportunities for auto-component manufacturers

Conclusion & key takeaways


BEV sales in India recorded high growth across categories in FY23 despite the supply chain disruptions, macro-economic and geopolitical uncertainty, and high commodity and energy prices


India Domestic BEV Sales | Units

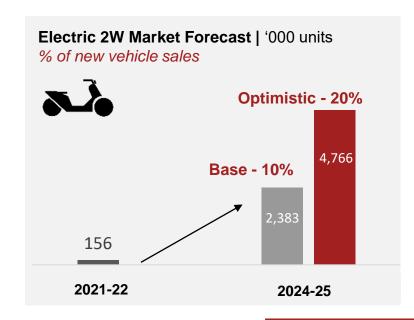
Three-wheelers

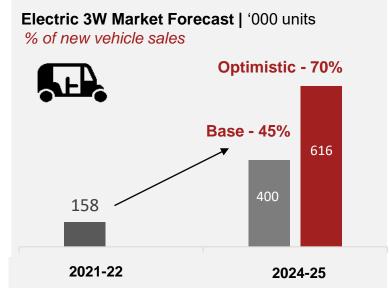

- Demand increase due to last mile connectivity services
- Share of high-speed models increasing – new model launches driving growth
- Favorable TCO in urban & rural settings
- Passenger segment comprises ~90% of sales
- e-3Wh cargos expected to do well in the next 3-5 yrs

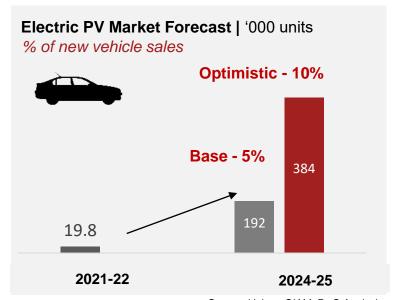
- Consumer preference towards utility vehicles
- Tata Nexon & MG ZS topselling models
- Several premium EVs also launched

- >95% of sales volume driven by govt. STUs
- Procurement through govt. subsidies
- Major manufacturers have set up capacity

Source: Vahan Dashboard, PwC Research & Analysis


While e-2Wheeler, e-3Wheeler & public buses in India will be early adopters; Medium & Heavy-duty trucks to see least adoption




Electric Vehicles & e-Mobility: Market Overview & Opportunities PwC

October 2023

In the medium term, e-2Wh & e-3Wh segments will show strong growth due to favourable TCO¹ & lower delta in upfront cost of acquisition between ICE & EV

Source: Vahan, SIAM, PwC Analysis

Key driving factors

Environmental Concerns

Tackling climate change through reduced emission norms

Fiscal Impact

High oil import bill & foreign oil reliance makes it challenging to manage fiscal deficit

Charging Infrastructure

De-licensing, definition of charging standards, promotion of interoperability

Supply Chain

Development of capabilities in local manufacturing, supplier maturity

Customer Acceptance

Purchase subsidies under FAME/ state govt. policies, improved battery ranges

¹TCO – total cost of ownership

Environmental, fiscal & financial factors along with increase in supplier readiness will drive the growth of electric vehicles in India...

1

Environmental Concerns

- 63 Indian cities among world's 100 most polluted cities¹
- 23% of GHG emissions due to vehicular emissions²
- Pledged to reduce ~35% emissions by 2030 from 2005 levels under Paris Agreement³

Sources – ¹IQAir World Air Quality Report, ²Climate Action Tracker – Decarbonizing Indian Transport Sector, ³PIB

4

Supply Chain

- ₹25,938 crores allocated under PLI for automobile & auto-components¹⁰
- 5% additional incentives on BEVs will promote local manufacturing ecosystems¹¹
- 18% share in advanced auto tech. targeted will make India major supplier of critical BEV tech.

Sources – ¹⁰PIB (Mar 15, 2022), ^{11,12}Ministry of heavy industries – scheme document for auto PLI

2

Fiscal Impact

- \$119.2 billion crude oil import bill in 2021-22, ranking 3rd globally on oil spend⁴
- \$10 increase in crude oil prices leads to increase in current account deficit by 0.4%-0.6%⁵
- 50 60 basis points increase in CPI inflation for every \$10 increase in crude prices⁶

Sources – ⁴Petroleum planning & analysis cell (PPAC), ⁵Edelweiss wealth research, ⁶RBI- Confronting Supply-Driven Inflation (July 16, 2022)

5

Availability of Finance

- ₹19.7 lakh crores required between 2020 & 2030 for India's EV transition¹³
- ₹3,307 crores funding raised by EV startups in 2021¹⁴
- \$300 million fund setup by Niti Aayog & World Bank for EV loans in India. Reduce financing cost by 10% - 12%¹⁵

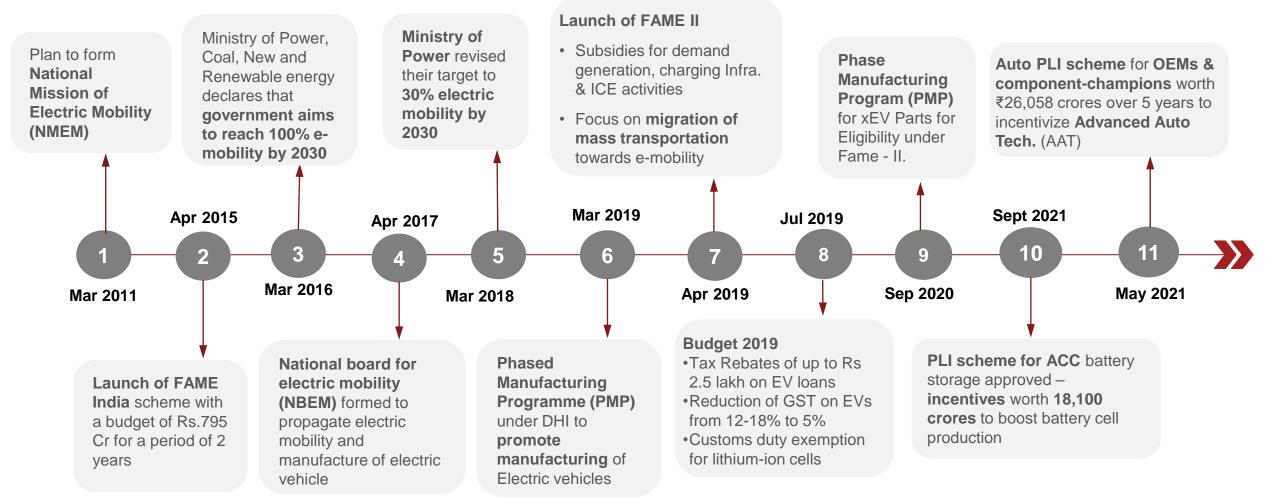
Sources – ¹³Niti Aayog – Banking on EV, ¹⁴ETAuto – EV funding in 2021, ¹⁵Niti Aayog press release

3

Charging Infrastructure Push

- **22,000** EV charging stations planned to be installed by oil marketing firms⁷
- ~₹1,000 crores incentives under FAME & state govt. policies for charging equipment & infra.8
- De-licensing of charging operations & guidelines on affordable tariffs for operators⁹

Sources – ⁷PIB (Feb 19, 2022), ⁸PIB (Dec 10, 2021), ⁹Public information

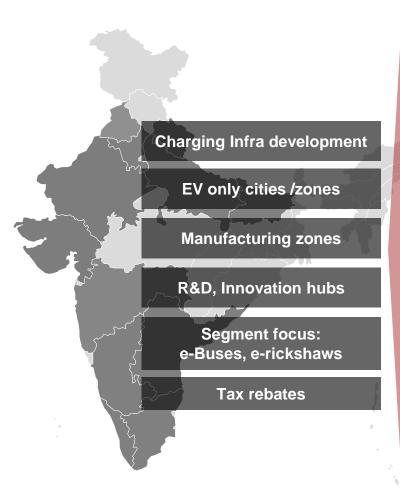

6

Customer Awareness

- 66% of Indian customers willing to buy an electric vehicle¹⁶
- Focus on Net Zero emissions & ESG goals from several prominent corporate houses
- Campaigns such as Switch Delhi, Shoonya & Go Electric boosting customer confidence

Sources – ¹6CarDekho OMG study 2021

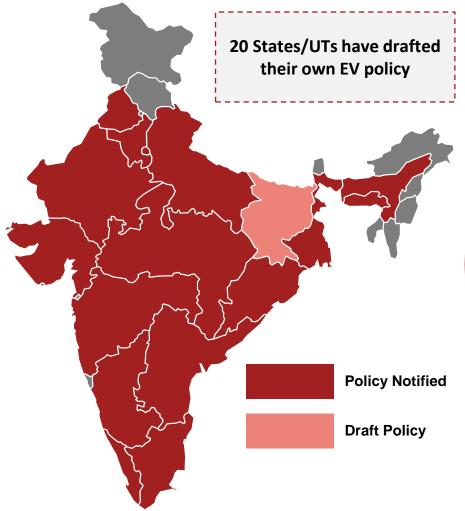
...coupled with strong government support; The central govt. has been actively supporting EV ecosystem growth over the past decade



Source: DHI, SMEV, PwC Research & Analysis

State governments have formed their own EV policies to drive rapid adoption in their respective states

Key Policy Focus


State

State	Key Policy Focus
Andhra Pradesh	Focus on innovation, new technology and workforce training. Aim: 10L EVs on road by 2024; replace public transport fleet across state by 2030
Bihar	Bihar is the fastest growing market for e-rickshaws . Focus on leveraging this to promote local e-rickshaw manufacturing
Delhi	Priority: Reducing air pollution and creation of EV sales jobs. Last mile transportation fleets expected to shift 50% EVs by 2023. Target: 25% share of EVs in sales by 2024.
Karnataka	First state to issue an EV-specific policy in the country. Focus on R&D , productions , services and customers. Aim: 100% e-mobility in auto-rickshaws, cabs, corporate fleets, and school buses/vans by 2030.
Kerala	Focus on EV manufacturing, particularly e-buses . Procurement of 6,000 electric buses by 2025, concessions to manufacturers setting up in the state.
Maharashtra	Scheme for MSMEs and large manufacturing, setting up of charging points at petrol stations.
Tamil Nadu	Focus on manufacturing, use of venture capital and business incubation services and commercial fleets. 10% parking reserved for EV in commercial spaces.
Telangana	Skills development , innovation and creation of jobs through shared mobility and charging infrastructure
Uttar Pradesh	EV manufacturing hub, investment in charging infrastructure, development of battery management. Aim: 10L EVs on road by 2024
Uttarakhand	Dedicated EV manufacturing zones , electrification of public transport. Aim: 100% electrification of public transport by 2030. Subsidy for EV manufacturing in the state
	Bihar Delhi Karnataka Kerala Maharashtra Tamil Nadu Telangana Uttar Pradesh

Complete list of 20 states not displayed

States have not only drafted EV policies but have also committed to following through with additional actions...

Source: State EV policy, PwC Research & Analysis
For in detail description of individual state policies, click here.
Electric Vehicles & e-Mobility: Market Overview & Opportunities
PwC

State	Additional Actions – Key Focus
Andhra Pradesh	"Go Electric" campaign initiated to promote EV adoption and development of charging infrastructure
Bihar	Fastest growing market for e-rickshaws ; fifth largest EV market in India. Subsidy for E-Bus with maximum amount of INR 7,50,000.
Delhi	EV Capital of India – focus on development of charging infrastructure and battery swapping stations.
Karnataka	Full exemption on road tax and EV registrations . Aims to attract investments of INR 31,000 Cr and create employment for 55,000 persons.
Kerala	Focus on EV manufacturing , particularly e-buses . To procure 6,000 electric buses by 2025 & provide concessions to manufacturers setting up in the state.
Maharashtra	Aim: 10% of all new vehicle should be EV 2025, Mandated all public bodies for EV purchase.
Tamil Nadu	Aims to become an EV manufacturing hub and attract investment in manufacturing facilities.
Telangana	Aims to attract investments of 4,000 crore over next 5 years. Plan to set up 800 EV charging stations by the end of 2022.
Uttar Pradesh	To roll out 1 million EVs on roads by 2024 . 1,000 electric buses and 200,000 charging stations by 2030. Electrification of 70% public transport by 2030.
Uttarakhand	Incentive of 10% of cost on vehicle or INR 7,500 on e2Ws, and of 5% or INR 50,000 on e4Ws

...resulting in the *initial wave of EV adoption* and encouraging manufacturers to allocate capital to EV manufacturing

Uttar Pradesh: 82,024 (↑ *159.6%*)

Maharashtra: 51,422 (↑ *446%*)

Karnataka: 46,180 (↑ *254%*)

Tamil Nadu: 39,629 (↑ 231%)

Delhi: 34,522 (↑ *192%*)

Sales numbers include e-3Ws, e-2Ws & e-PVs

Simple Energy – *INR 2,500 Cr* – manufacturing facility in Tamil Nadu

Pinnacle Industries – *INR 2,000 Cr* – EV manufacturing units in Pune and Indore

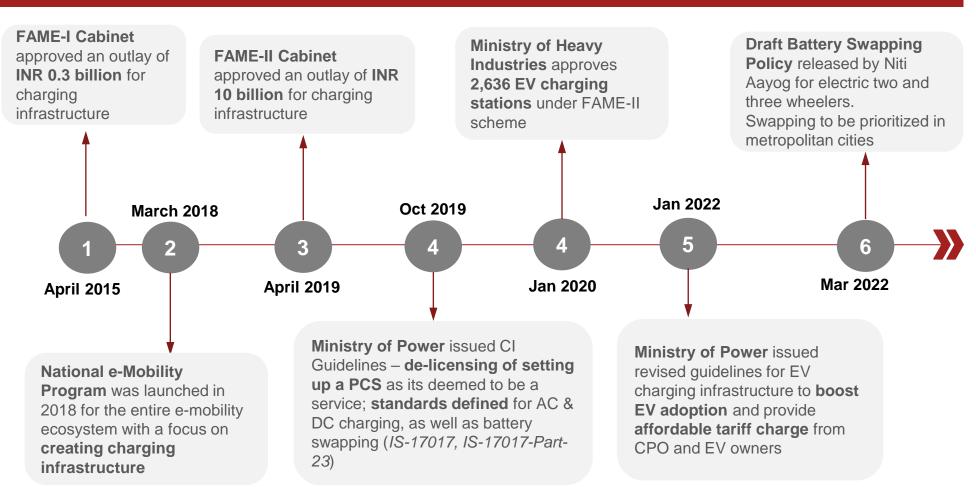
TPEML – *INR 725 Cr* – 300,000-unit manufacturing plant in Gujarat

Ather Energy – *INR 650 Cr* – 400,000-unit capacity plant in Karnataka

Suzuki – *INR 10,445 Cr* – battery manufacturing plant in Gujarat

Exide Industries – INR 6,000 Cr – lithium-ion cell manufacturing unit in Bengaluru

investments in battery manufacturing


Ola Electric – *INR 3,725 Cr* – Battery Innovation Centre (BIC) in Bengaluru

Cygni Energy Private Limited – INR 300 Cr – 40,000-battery capacity plant near Hyderabad

Source: The Economic Times, Vahan Dashboard, PwC Research & Analysis Note: USD to INR conversion taken from average of monthly settled prices for FY22

In order to drive the next phase of growth adoption, the government is focusing on *developing charging infrastructure*

Central Government initiatives to boost charging infrastructure and battery storage

Key Points

- 22,000 EV charging stations to be set up by public sector OMCs by 2023
- 2. Revenue sharing model for installation of public charging stations
- Delhi government mandates allocating 5% parking for EV charging
- 4. Charging stations sanctioned under FAME
 - a. 1392 charging stations on 16 major highways
 - **b. 184** charging stations on 9 expressways
 - c. 2877 charging stations for 25 states/UTs

Source: Public Information Bureau, PwC Research & Analysis

GoI has declared its *focus on interoperability*, which is attracting investments in the charging space to give the much-needed infra. boost

Government focus on promoting interoperability

Public EV Charging Standards: Bharat EV Charger AC001 and DC001

Charging Protocols: CHAdeMO, CCS-2, Type 2 AC (for 2&3W) and the Bharat Chargers will all co-exist

Charging station setup: De-licensed activity for public charging stations

Several players have announced big plans

Player	Announcement		
Tata Power 10,000 public charging stations in 5 years			
REIL	4,244 public charging stations across India		
Ather Energy	5,000 EV fast chargers across India by 2025		
Volttic 12,000 charging points by 2025-26			
Fortum	Partnerships with Charge+Zone, Plug Mobility, IOCL		

Source: The Economic Times. PwC Research & Analysis

Government focus on promoting interoperability

Standards for battery swapping to promote interoperability

Players are steadily entering the swapping market

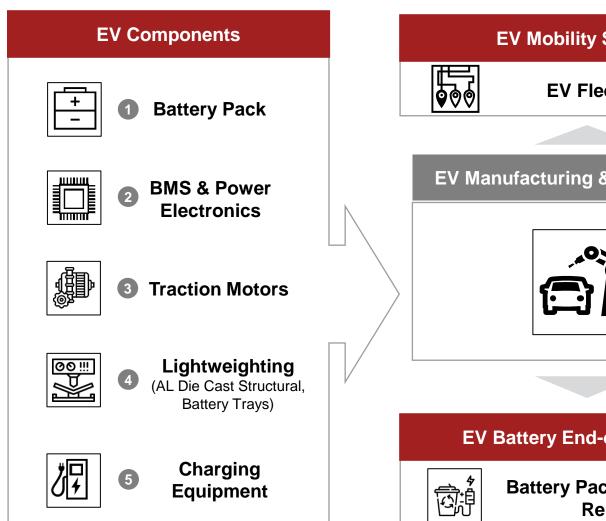
Player	Announcement			
Sun Mobility	500 swap points within 2022\$50 million fundraise from Vitol			
Gogoro	Partnerships with Hero Motocorp & Yamaha India			
LithIon	200 swapping centres in 2 years			
Honda Power Pack	New subsidiary for battery swapping services			

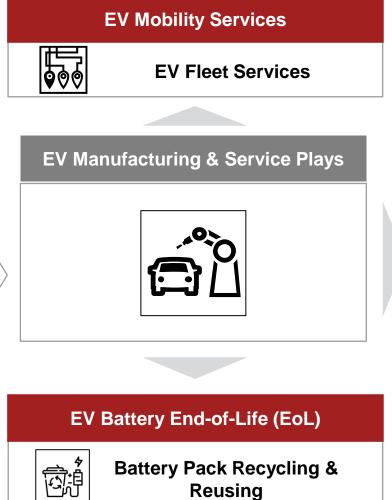
In the backdrop of infra. growth, EV adoption in India could be driven by – preferences for shared mobility & quantum of vehicle usage

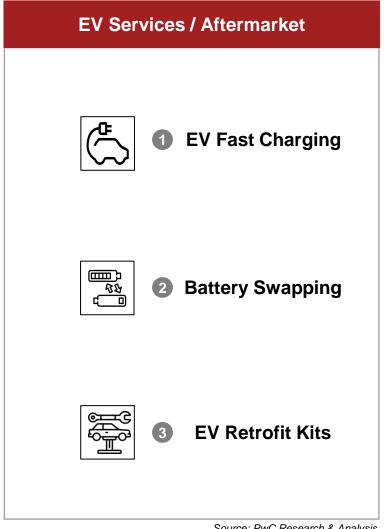
Possible adoption scenarios

High vehicle usage (in kms) Low vehicle usage (in kms) Mass, convenience & TCO Selective, Subsidies driven **Shared Mobility** driven Cost economics favorable only with EV subsidies Total cost of ownership key purchase factor High passenger load factors but low operating range Government and captive owned EVs – fleet driven Small fleet or individual owned EVs. Charging infrastructure owned by fleet Private fleet buyers slow to adopt Public fast charging infrastructure user **Environment Conscious**, Selective, Cost driven subsidies driven Private Usage Cost of acquisition & operating cost Improved cost economics with subsidies favorable Home/ workplace charging user Combination home/ workplace charging & EV will be purchased as second/third car public fast charging needed

Contents


Overview of the Global EV market


Overview of the Indian EV market


Opportunities for auto-component manufacturers

Conclusion & key takeaways

Opportunities for component manufacturers exist across EV components, EV aftermarket and EV services

Source: PwC Research & Analysis

EV Components

Batteries form a major portion of EV costs; global battery market estimated at \$116 Bn by 2030; significant reduction in Lithium-ion prices expected (dropped ~90% from 2010-2021)

Various battery types

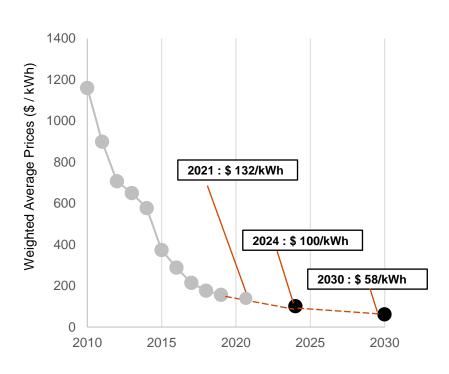
Non-exhaustive

Lead Acid Battery

Primarily to supplement other batteries. High powered, inexpensive, short life

Nickel Metal Hydride battery

Used in hybrid vehicles, Expensive, high selfdischarge rate, less effective (vs Li-ion)



Advanced batteries

Lithium-ion battery

Most commonly used battery in electric cars, Higher energy efficiency and temperature performance

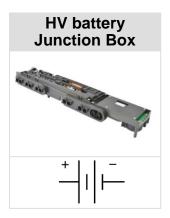
Lithium-ion battery : Price outlook

Source: Bloomberg NEF Battery Price Survey, 2021

Key insights

- Near to Mid term shifts from leadacid to 'advanced batteries', high energy density cathodes
- In the longer term, new technologies such as silicon or lithium anodes, solid state cells and new cathode materials will help reduce battery prices further
- Sourcing strategies: Growth in BEV sale > Increasing order size > Better price negotiation
- New pack designs and falling manufacturing costs (economies of scale) expected to reduce prices further

Lithium-ion battery manufacturing value chain houses several mature players; Competitors must consider intensity of competition & long-term sustainability to choose their battery plays

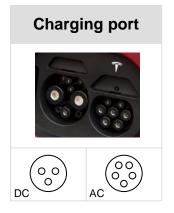

	Materials Supply	Cell Manufacturing	Module & Pack manufacturing		Integrator and Controls	Construct and Maintain (EPC)	Development
Description	 Supply raw materials for cathode, anode, electrolytes, etc. 	■ Develop and manufacture cells	 Arrange cells into modules and pack Provide battery management software (BMS) 	 Design and sell power electronics (such as inverters) 	 Design & package the battery system Provide higher-level Energy Mgmt. software 	■Ensure project design & installation, Maintenance, Replacement	 Sell to the end- customer Organize the implementation Provide financing
# of players	>20	>20)	>50	>100	>100	>250
2021 EBIT Margin	-1% to +10%	-8% to	+8%	+9% to +12%	+8% to +10%	+2% to +5%	n/a
Key trends	 Growing demand for materials such as Lithium, Nickel & Zinc Compensated by increased bargaining power of battery manufacturers 	 Pressure to decrease Battery prices is driving race to achieve scale Battery makers are adding large amounts of new manufacturing capacity despite under utilization of existing capacity Intense competition to improve Energy storage system economics for buyers leads to lower margin 		• Industry has followed horizontal orientation for inverters, using standardized interfaces to allow mix-and-match assembly of devices	complex software to serve diverse applications • More players are entering the integration space from a variety of	Increasing demand for contracts that include full set of guarantees) as developers look to place more risk on EPCs Developers increasingly want to engage with larger, more stable EPC firms	 Deployments shifting from front of the meter to behind the meter as C&I customer adoption grows Financers are increasing lending for energy storage projects as comfort with technology grows
Flectric Vehicles & e-Ma	obility: Market Overview & Oppor	tunities					October 20

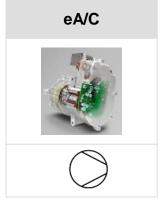
Preference for HV architecture in EVs opens opportunities across several power electronic components for suppliers

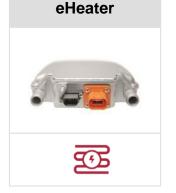
Power Electronics – Components

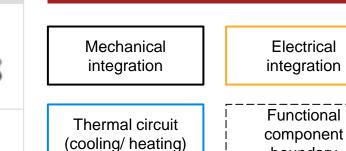
Wiring Harness

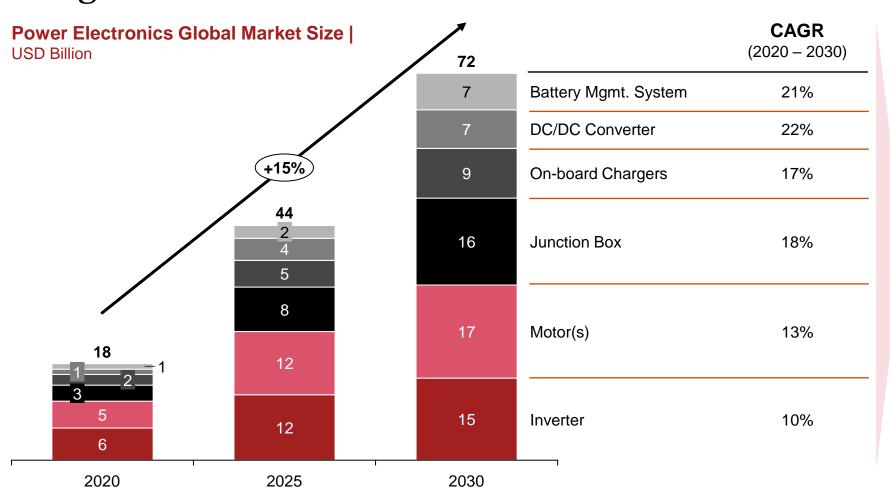
Integration











NOTE: eA/C: electric A/C compressor, eHeater: electric heater (air or coolant), PDU: Power distribution unit, BDU: Battery Disconnect Unit (contactors, fuses); OBC: On-Board-Charger Electric Vehicles & e-Mobility: Market Overview & Opportunities

October 2023

boundary

The power electronics market is expected to grow at a 15% CAGR from 2020 to 2030; High growth opportunities exist across several part categories

Key Growth Drivers

Preference for HV architectures

- Increased ASP of converters due to high efficiency & low EM interference
- Separate converters required for infotainment & safety systems
- Complex control algorithms for HV applications to drive specialization

Accelerated global EV adoption

- Govts'. focus on battery safety to drive market premiums for BMS
- Improvements in EV performance & customer demand for feature richness to drive growth in junction boxes

Traction motors shall remain an attractive segment for manufacturers; Useful to power electric vehicles and also drive in-vehicle applications

Various motors types used in EVs

DC series motor & Brushless DC motor (BLDC)

Permanent magnet Synchronous motor (PMSM)

3 Phase AC induction motor

Switched reluctance motor (SRM)

Attributes preferred by OEMs

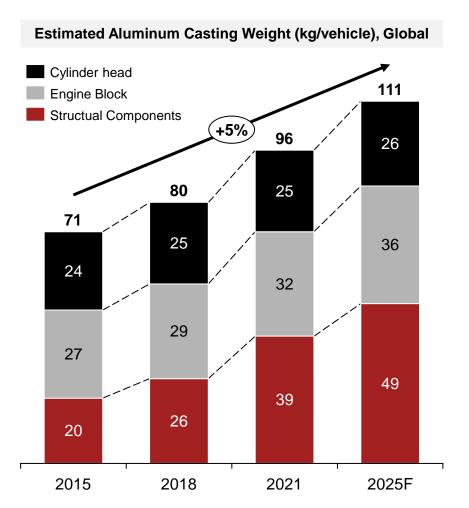
Increased life due to lower maintenance

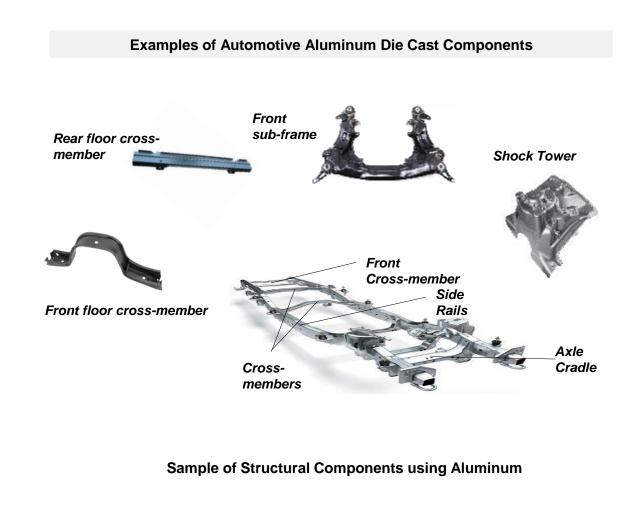
Compactness preferred for invehicle applications

Improved comfort due to lesser noise

Higher efficiency from better torque to weight ratio

Applications extend beyond powering an electric vehicle

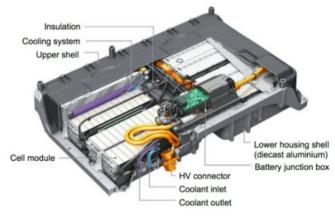

Modern automobiles use ~40 electric motors on average. Less than 25% of these motors are ICE specific


Radiator fan	Trailer hitch retract	
Radiator shutters	Traction motors	
Oil Pump	Trunk/hatch lift	
Water Pump	Fuel/charge port flap	
Fuel Pump	Sun shades	
eTurbo	Power windows	
eVVT	Sun roof	
Folding side mirrors	HVAC dampers	
Running board retract	Ventilated & heated seats	
Mirror XY	Seat adjusters	
Sliding doors	HVAC blowers	
Ride stabilization	Door locks	
Steering wheel extend/tilt	Pedal extend	
Windshield wipers	Adaptive headlights	
AC compressor	Power steering	

ICE applications

Propulsion agnostic applications

The shift from ICE to EVs expected to increase focus on light-weighting due to enhanced battery range benefits from lighter vehicles; Sound opportunity for AL structural parts



Battery Trays are another structural element with favorable possibilities of weight reduction in exchange for enhanced battery range

Sandwich architecture Battery tray, typically used for lightweighting

Battery tray for Audi e-tron

Key components of an EV battery tray

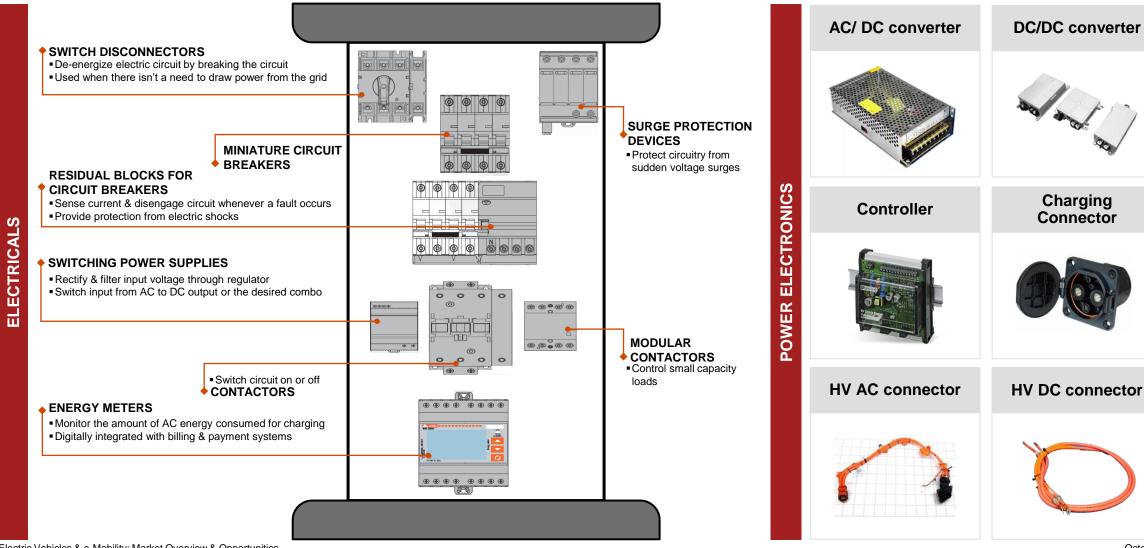
Top protection cover

- Upper seal of the tray
- Passenger compartment protection from heat / fire

Structural frame and cross members

· Protection from intrusions in a crash

Cooling plate / Thermal management


- Good thermal conductivity to ensure stable operating temperature of batteries
- Can be also integrated in the bottom cover

Bottom protection cover

· Protects the cell from undercarriage impact, road debris, etc.

EV charging equipment can be split into electrical components and power electronic components

EV charging connectors are another opportunity, especially since one charging box can have up to three connectors with different standards

9.6 million estimated charging ports required by 2030

Source: Edison Electric Institute

Home Charging

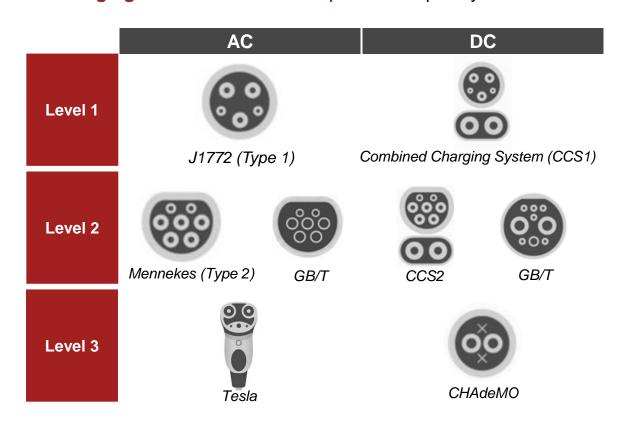
7.5 million

Workplace Charging

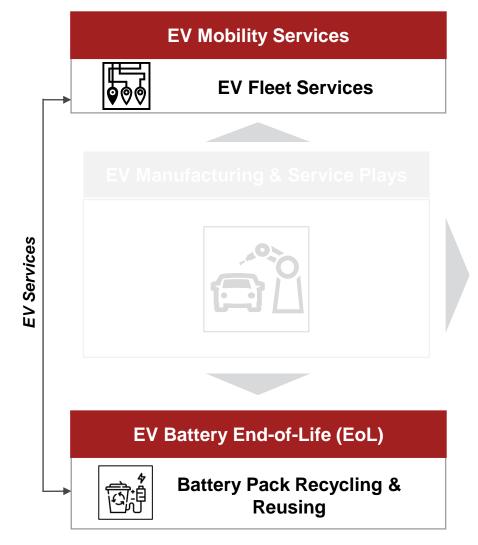
1.2 million

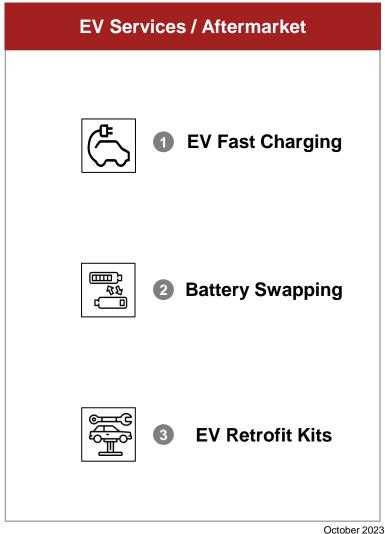
Public Charging

100,000


Destination Charging

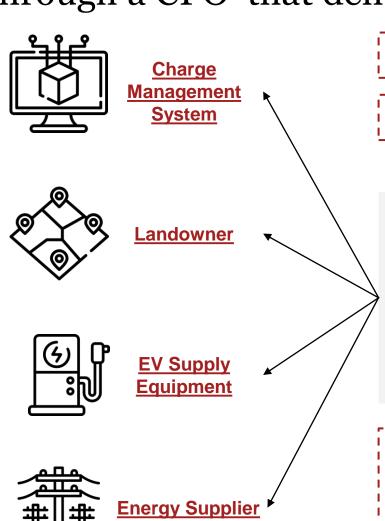
800,000


EV charging connector standards defined by 3 levels


System Type AC		DC	
Level 1	120V single-phase Up to 16A and 1.9kW Typically 12A	200-450V Up to 36kW, 80A	
Level 2	240V single-phase Up to 80A and 19.2kW Typically 32A	200-450V Up to 90kW, 200A	
Level 3	AC charging above Level 2 Some EVs support three- phase AC up to 4kW	Also called DC Fast Charge (DCFC), 200-600V DC Up to 240kW, 400A	

EV charging connector standards / connector pin layout

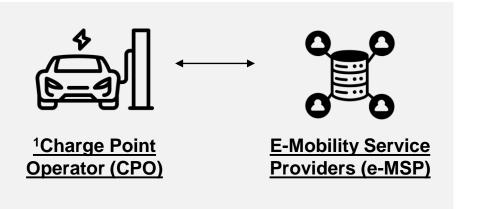
Initial wave of EV adoption has resulted in a sizeable population of EVs on-road; component makers must now also focus on their *EV aftermarket* & *EV services* play


EV Aftermarket

There are various use cases for EV charging infrastructure; Fast charging use cases are found in *Away from Home* charging applications

			2		
Charging	At Home	Away from Home			
patterns	Home Charging	Work Charging	Destination Charging	Public/ Rapid Charging	
General Use Case	Expected to be the majority source in developed nations. However, not most suitable in India	Users looking to charge when offering (e.g., office spaces	Home" a convenient, requires partnered b, retail areas). Would have to nome rates on price	"Far From Home" For users travelling far from home, less price sensitive as speed and availability are more important drivers	
Description	Charge vehicle at home when not in use, off-street	Top up charge during the day at work	Top up charge when visiting regular destinations	- Charge your car from public charging point or charging hubs - Charge at strategic locations for long journeys or for charging commercial fleets	
Charging Speed	Slow charging: 6-15h; 3 - 7kW	Slow and Medium charging: 6-5h & 2-4h; 5-7 kW & ~20 kW	Fast charging: 2 - 4h; 50kW	Medium, Fast and ultra-fast charging: 2-4h & 45mn; 22 kW & 50+kW	
Customers / Location type	Homeowners with parking space	Companies with car parks	Supermarkets, hotels, restaurants, Car park operators, etc.	EV owners, E-taxis, highway service operators, petrol pumps, etc.	
India Standards	No specific standards defined, generally used with a 230V/15A single phase plug	 Public EV Charging Standards: Bharat EV Charger AC001 and DC001 CHAdeMO, CCS-2, Type 2 AC (for 2&3W) and the Bharat Chargers will all co-exist in India in the near future. However, future products will have higher power requirements and hence they are designed to be compatible with the more globally accepted standards i.e. CCS and CHAdeMO 			

Source: PwC Research & Analysis


EV Fast-charging offers *six possible value plays*; Players are integrated through a CPO¹ that delivers the charging service to customers

A CPO usually works with various stakeholders to procure infrastructure

An e-MSP enables discovery of charging points & captures customer data

Master

End Customer (EV Owner)

e-MSPs provide access to charging stations across their network while a master e-MSP aggregates multi-brand charging stations and provides access to the customer

To scale EV charging infrastructure & deliver growth, players *need to* build strategic partnerships

Overview of Partnership Options for Charge Point Operators (CPOs)

Need for Partnerships

- 1. Revenue stacking:
 Club EV charging with
 additional revenue streams
 due to low utilisation rates
 currently (5% 10%)
- 2. Cost control:
 Charge point operators
 (CPOs) can achieve
 commercial viability
 through partnering with
 players that control inputs
 to EV charging

Key Criteria	Charging Segments			
	Home Charging	Work Charging	Destination Charging	Public/ Rapid Charging
				7
Critical Now	 EV car manufacturers Vehicle leasing providers 	 Commercial estate management companies Land owners 	 Parking spaces at commercial hubs (supermarkets, gyms, retail hubs, etc.) Land owners 	 Metropolitan agencies Universal card payment providers Advertising agencies Land owners
Important tomorrow	Home builders Municipal councils	Vehicle leasing providers	Advertising agencies	Premium EV car manufacturers (large battery modules)
In the long term	 Retail energy suppliers Renewable energy hardware (solar PV, battery storage) 	 Advertising agencies Specialist energy management companies 	Owners of experience centres (restaurants)	Distribution network operators

Public-private partnerships key to succeed in EV fast charging as resulting *cross subsidized infra. models* provide favorable economics

Subsidized vs. Standalone Business Models

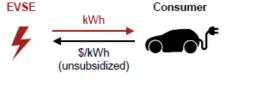
Standalone (Own and Operate)

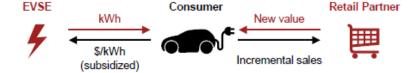
- EVSE¹ company provides charging infrastructure and services without subsidization
- Costs are passed to consumers in charging rates

Retail Host -**Owned** Channels

- Retail host utilizing EV charging to drive increased foot traffic
- Subsidize EVSE investment and monetize investment via other means

Auto OEM Subsidization

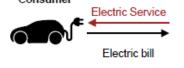

- Auto OEMs help finance EVSE investment CAPEX
- Price of EV infrastructure recovered in EV car sales price


Utility Partnership

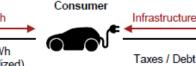
- Work with electric utilities to incentivize EV adoption and EVSE charging infrastructure deployment
- Potential to pass investment costs to customers via regulated rates

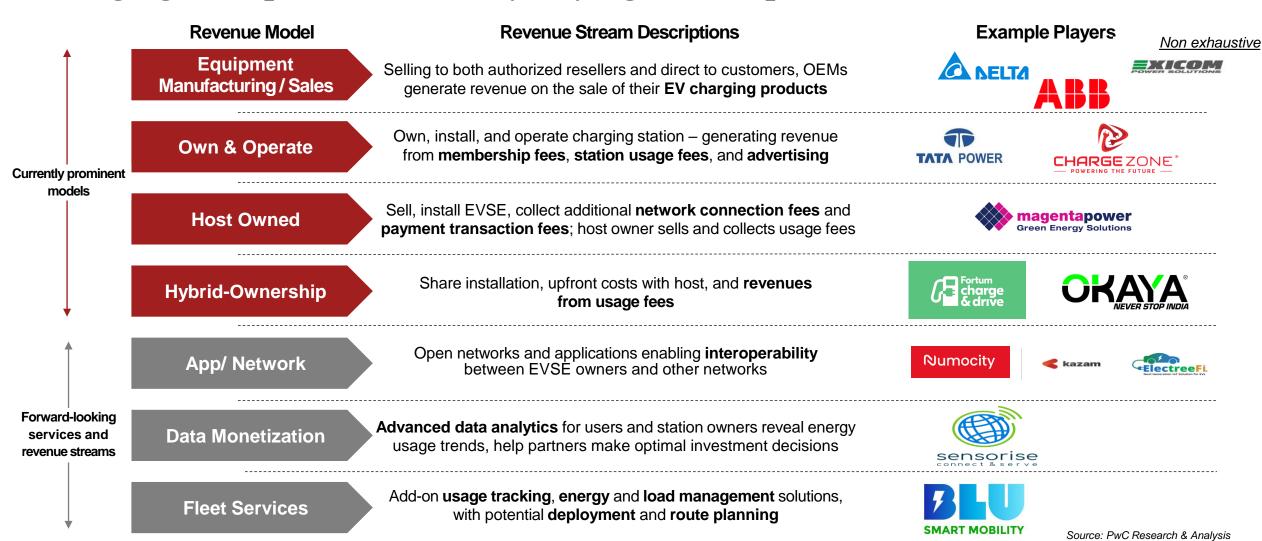
Government Run

- Subsidize EVSE investment with tax collections or government debt
- Useful for segments that would not otherwise attract investment



Auto OEM





1 EVSE – electric vehicle service equipment (charging equipment manufacturers)

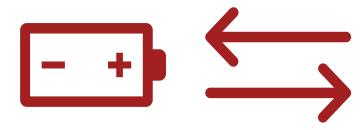
Innovative new business models will be needed to sustain earnings from fast charging; Competitors currently relying on four prominent revenue models

Electric Vehicles & e-Mobility: Market Overview & Opportunities

PwC

October 2023

While fast charging is currently more established, *battery swapping is* another method that can co-exist


Charging

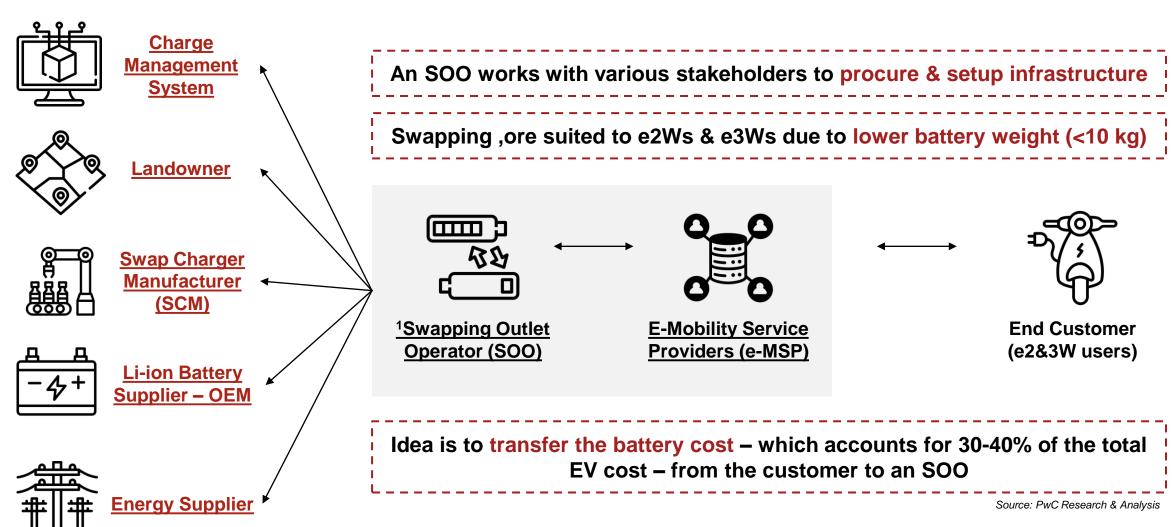
EV fast charging – Consists of plugging-in an EV battery to equipment which can recharge it

Rationale is to **top-up an EV battery** as quickly as possible to reach destination

Standards have already been well-established across markets; Easier to achieve interoperability

Requires battery to be sold along with the vehicle, increasing acquisition cost

Swapping


Battery Swapping – Consists of mechanically swapping a discharged electric battery with one that is already charged

Rationale is to **de-link the battery cost from EV cost** & minimize re-charging time by simply swapping a spent battery

Relatively new concept with standards in major markets yet to be established; Interoperability key for success but harder to achieve

Enables innovative business models such as batteryas-a-service, thereby reducing acquisition cost

EV Fast-charging offers *seven possible value plays*; Players are integrated through a SOO¹ that delivers the swapping service to customers

Case Study – PowerSwap, a Swedish battery swapping operator, has pioneered an interesting business model for Swap Outlet Operators

Key Features of PowerSwap's Business Model

Overall business model is based on sales of battery swap equipment as well as licensing agreements with OEMs and battery manufacturers

Solution relies on **compact mechanical unit** – needing only
12 m² space – rather than a
large "charging" station

Power Swap System
automatically identifies the
battery in the vehicle and stores
it in the charging compartment,
swapping it with a charged
battery

Prioritize installation of swap stations in **existing petrol pumps/parking lots** rather than on unacquired land

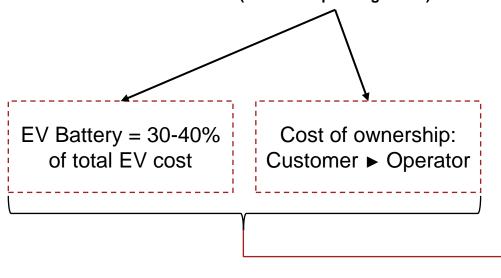
Swapping is executed horizontally, through the side of the vehicle, rather than from underneath thus reducing complexity

Zero emission source – electricity is sourced through solar, wind and hydro power

Drive-Thru Service: The entire process. as well as payment, is handled through a mobile application, thus allowing for easier access

Lead time < 3 minutes, cost of a single PowerSwap unit is under € 200

Source: Company website, PwC Research & Analysis


Depending on the operating needs of the consumers, swapping can bring in major benefits

Advantages of Swapping

Lower Cost of Ownership

(based on operating needs)

Higher Uptime, Asset
Utilization

(saving on re-charging time)

Works for commercial fleet-operated vehicles & private owners

Only takes 3-5 mins (Supercharging: 20 mins)

Source: PwC Analysis, The Economic Times

Increase in EV penetration

Swapping will prove to be more prominent with e-2Ws & e-3Ws, while fast charging will most likely dominate the e-PV & e-CV space

Segment-wise EV Charging/Swapping Use Cases

			Plug-in C	Plug-in Charging		Battery Swapping	
Vehi	icle Category	Capacity	Slow Charging	Fast Charging		Manual	Robot Assisted
	2 - Wheeler	2 kWh	Must Have	Good to Have		Good to Have	Not Required
	3W Rickshaw	3x2 kWh	Must Have	Good to Have		Must Have	Not Required
	3W Auto	10 kWh	Must Have	Good to Have		Must Have	Not Required
	4-Wheeler	25 kWh	Must Have	Must Have	 	Good to Have	Good to Have
	3W Cargo	18 kWh	Must Have	Must Have	!	Good to Have	Good to Have

____ Most Preferred

Source: PwC Research & Analysis

Retrofitting of EV kits is an emerging niche to be explored; Favorable cost dynamics to dictate growth of retrofitment players

Retrofitment: A Brief Overview

Electric Vehicles & e-Mobility: Market Overview & Opportunities

Which vehicles?

Diesel vehicles

10+ years old

What incentive?

Bypassing of National Green Tribunal's ban if vehicle is retro-fitted with EV kit Incentivized retrofitting from a consumer's standpoint and provided a further boost to this space

Well Established Standards

Regulated by ARAI to approve EV retro-fitting kits

Approval procedure:

- I. Kit component level
- II. Vehicle level

Type Tests:

- AIS123 Part 1: Hybrid conversion; light vehicles
- AIS123 Part 2: Hybrid conversion; heavy vehicles
- AIS123 Part 3: Electric propulsion kit for pure electric operation

Key Players

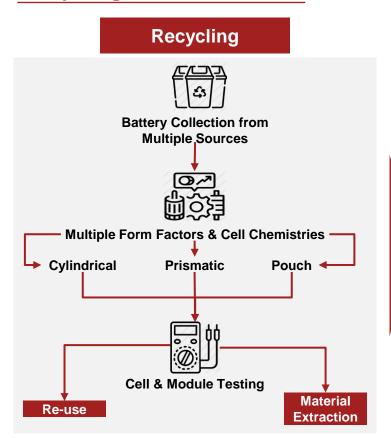
Source: PwC Research & Analysis

EV End-of-Life Services

Reusability, minimization of wastage is paramount due to high cost & scarcity of key battery elements; High innovation potential since strategies in nascent stages

First Life Second Life **End-of-Life** Re-use Re-cycle Swap Various chemical and metallurgical Battery leasing ~20% of the power capacity left in How does it Pay per use discarded EV batteries; can be used for processes to extract reusable work? Renting stationary applications (for example elements, rejuvenate the cathodes home charging) Swapping allows for less time spent Re-using can extend battery life by 6-7 **Pros** Crucial for sustainability of e-mobility charging batteries, higher on-road% years for EV Recycling to help retrieve valuable • Batteries used for **stationery applications**: Allows for the use of smaller battery minerals from batteries- reduce the provide high output, ease of use and faster sizes and lighter construction need for further mining charging Initial acquisition cost lowered Limited competition, early mover Reused batteries have strong market considerably (battery, power advantage potential - India & globally (B2B and B2C) electronics) Need for further policy Requirement of robust battery packaging

Challenges in adoption

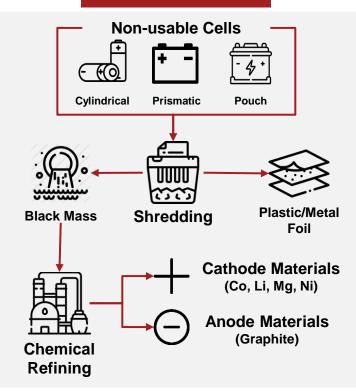

- Limited by design standardization
- Requires scale
- Cost of carrying inventory
- High investments

- Requirement of robust battery packaging capability
- Highly competitive market including existing incumbent alternative technologies
- Customer's willingness to pay for re-used batteries
- Need for further policy directions/interventions –collection & disposal, financing etc.
- · Limited awareness and lack of compliance
- Slow market growth (maturity time), high investments

Source: PwC Research & Analysis

The battery End-of-Life business model consists of 3 key stages – recycling, re-use and material extraction

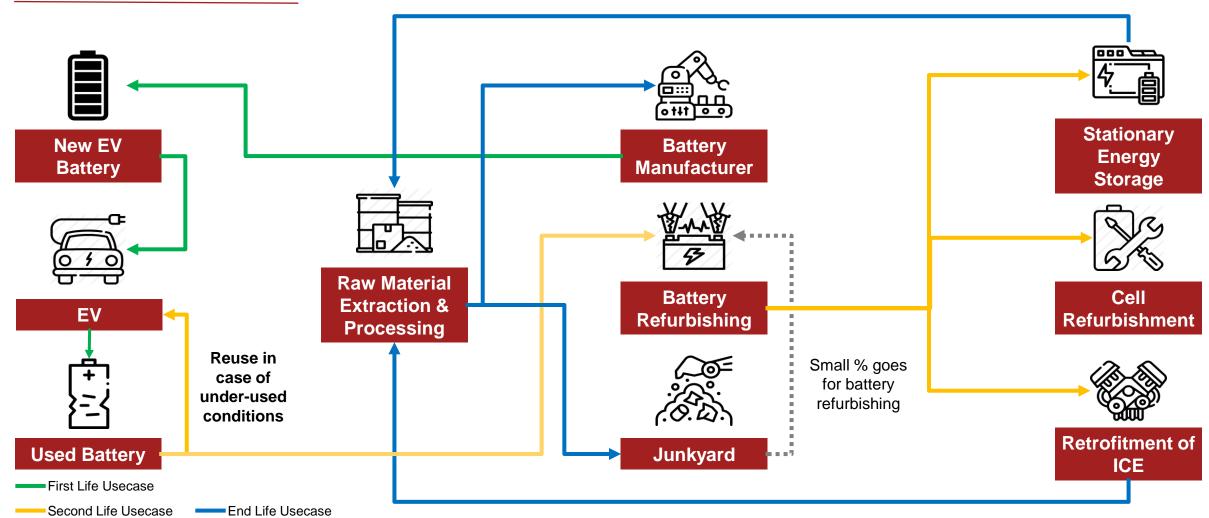
Recycling Business Model



At each step of the chain, like collection to recycling factories value is added and business segment opportunities can be accessed

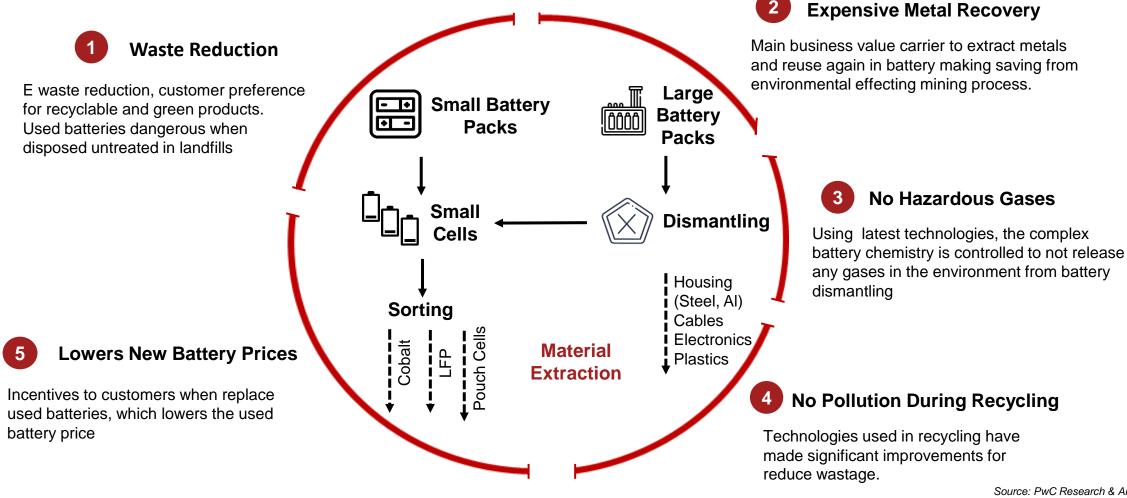
Re-use **Analysis & Application Matching** Cylindrical **Prismatic Pouch** 2nd Life Application Mobility & Stationary

Based on cell form factor and chemistry to manufacture 2nd life Li-ion for uses such as stationary energy storage and energy storage systems for residential or commercial and telecom solutions


Material Extraction

Final stage when batteries can be used further – they are shredded, and rare-earth metals are extracted to be sold to battery manufacturing companies

Re-use – EV Batteries can have stationary 2nd life use cases before being recycled or discarded


Lifecycle of an EV Battery

Recycle & Material Extraction – Li-ion battery recycling provides environmental & economic benefits to both customers & recyclers

Recycling Process and Benefits

Electric Vehicles & e-Mobility: Market Overview & Opportunities

Source: PwC Research & Analysis

EV Mobility Services

EV Mobility & Fleet Services are an emerging area of high growth, presenting several ways to play within the value block (1/2)

Opportunities Present within EV Ecosystem

	WAYS TO PLAY	KEY ACTIVITIES	TOOLS & SYSTEMS USED
	Fleet Ops/Management	 Maximizing EV asset utilization (vehicles, chargers) Onboarding & training drivers/ operators Identifying demand centres & onboarding customers Undertaking marketing efforts for brand awareness Building effective business models (operating model, pricing, staff) 	 Route planning (with charging considerations) Driver monitoring & coaching Scheduling (utilization, maint., charging, etc.) Ops. Management (telematics, etc.)
	Asset Ownership & Leasing	 Evaluating market dynamics Defining asset purchase model (e-vehicles, charging infra, land) Raising capital for purchase of assets Building asset leasing/ pricing model (pay per km, pay per use, etc.) 	 Demand forecasting & planning Asset lifecycle management Pricing analytics
3	Asset Maintenance	 Monitoring EV assets' health & usage patterns Repairing batteries, motors, chargers & mechanical parts Sourcing of replacement parts Training technicians and mechanics 	 Battery health monitoring & diagnostic systems Charger health & diagnostic systems Predictive maintenance analytics Remote assistance
	Hardware & Software	 Designing hardware systems for collecting EV asset-related data Operating assembly units & sourcing hardware components Building software applications for fleet operations optimization Integrating hardware & software for fleet optimization 	Embedded systemsAPIs

EV Mobility & Fleet Services are an emerging area of high growth, presenting several ways to play within the value block (2/2)

Opportunities Present within EV Ecosystem

WAYS TO PLAY	KEY ACTIVITIES	TOOLS & SYSTEMS USED
Digital, Analytics & Connectivity	 Building systems for transmitting & storing fleet data Creating platforms & algorithms for analysis of fleet data Developing dashboards & visual aids for fleet managers Integrating data from multiple sources to drive impactful insights 	 Data warehousing Cloud capabilities (architecture, security, etc.) Al/ Machine Learning Data visualization
Charge Management System	 Capturing asset operation info. for chargers deployed Assisting in descriptive & predictive maintenance for charge points Optimizing grid energy load management for charge points 	 ERP integration Software capabilities Machine to machine communication (grid to charger smart energy management)
\$ Price Accessibility/ Discovery	 Accessing info. on asset utilization (peak times, load, etc.) Developing platforms & algorithms for analysis of pricing data Integrating customer pricing with digital apps & ERP systems 	APIsCloud capabilitiesAI/ Machine LearningERP integration

Several competitors have made initial forays into the EV Mobility Services space, intensifying competition & creating innovative business models

Competitors within each Sub-Segment

Non-exhaustive, Illustrative

Fleet Ops/ Management

Asset
Ownership &
Leasing

Asset Maintenance

Hardware & Software Integration

Digital,
Analytics &
Connectivity

Charge Management System

EV fleet services plays also allow platform owners to monetize data collected, creating auxiliary revenue streams & a strong value proposition (1/2)

Digital Advertising

Data Monetization: Value Pools (1/2)

Use cases can be under at least one of three value pools:

Non-exhaustive, Illustrative

Personalization (tailored to individual needs)

Location-based promotions combined with driver insight

Based on vehicle-provided geo-data and customer insight, e.g. restaurant for lunch

Pay-for-performance promotions

Targeted, pay-for-performance promotions to customers with monitored ROI

Insurance

Individual driver pattern for personalized pricing

Insurance firms can reduce risk and improve pricing based on driver usage pattern & vehicle monitoring, (e.g. time-in-car, driving pattern, routes, speed data, etc.)

Product Enhancement

(development of more innovative products & services)

Auto-display nearest charging points

Based on vehicle geo-data, advertise nearest chargers & respective pricing

Car-to-car communication

Car-to-car communication facility to interact with others on social networks or work intranets, etc.(social, work...)

New insurance products

Create new specified insurance products based on personal patterns (e.g. parking accident insurance, voltage-fluctuation insurance)

Resource Utilization

(enable more efficient use of resources)

Create micro-communities for monetization in advertising

Based on driver/traveler data, detect micro-communities and sell access to advertisers

Loyalty-based mobility card

Launch loyalty-based mobility card with partners to combine different modes of transport and monetize cross-modal customer insights

Provide customer access for targeted sales of insurances

Act as insurance broker, recommending insurances based on customer profile (e.g. "cheapest", "most valuable features", etc.)

Electric Vehicles & e-Mobility: Market Overview & Opportunities

3

EV fleet services plays also allow platform owners to monetize data collected, creating auxiliary revenue streams & a strong value proposition (2/2)

Data Monetization: Value Pools (2/2)

Use cases can be under at least one of three value pools:

Non-exhaustive, Illustrative

Personalization

(tailored to individual needs)

Product Enhancement

(development of more innovative products & services)

3

Resource

Utilization (enable more efficient use of resources)

Travel & Tourism

Personalized location-bound recommendations

Based on location information, provide on-trip recommendations where to stay, go next, have dinner, etc. (via own platform or provide access to partners)

Geo-directory solution platform

Real-time maps solutions to consumers and businesses (beyond drivers) based on sensor data (e.g. road condition, traffic condition, speed pattern)

Provide service data to mobility providers and govts

Vehicles collect valuable insights on road conditions and chargers collect insights on grid conditions which can be used by government institutions (e.g., municipal corporations)

Automotive Suppliers

Usage patterns & driver preferences

Provide usage patterns to equipment manufacturers and preferences (e.g. 20% of fleets would pay ₹5000 extra for TPMS sensors)

Failure statistics and predictive maintenance

E.g. Motor with problems after 50k kilometres in humid climate conditions; when using ABC company parts, motor will fail after 1 lac kilometres

End-to-end spare parts & service management

Coordinate maintenance, service and repair value chain with various players – enabled by sensors monitoring status of parts and maintenance needs

High development costs across digital fleet services offerings means that component players need to carefully select areas for investment

e-Vehicle Fleets – Digital Technology Stack

User experience / Human-Machine Interface (HMI)

Compelling user experience, dashboards

Applications/ functions

Innovative software in fleet management, charging management, etc.

Cloud platform and cloud services

Enrich asset data and utilize cloud/edge computing resources

Backhaul connectivity and services

Secure V2X communication and OTA updates

Platforms and analytics

AI/ML based decision engines analyzing data

E-Vehicle/ fleet operating system

Management of in-vehicle computing resources & software services

Vehicle/ Charging management platform

Enabling software functionalities on powerful embedded hardware

In-vehicle connectivity and services

Secure communication between domain platform computers

Electronics and power components

Controlled electronics and embedded software components

Security and compliance

Automotive-grade cyber security & data compliance

Most Areas of the technology stack with **high investment need** are driven by **technical complexity** and need for **innovation**

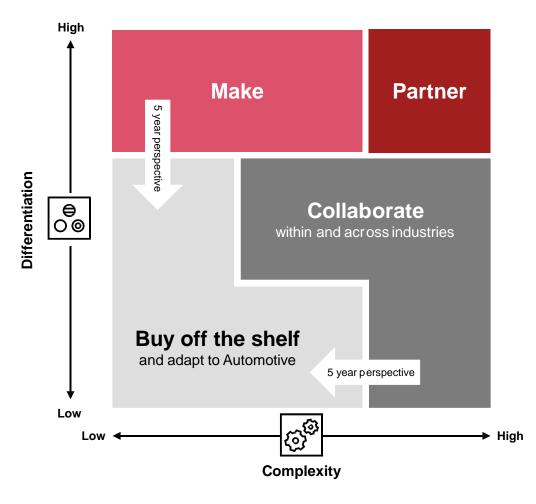
Being an innovation leader & first to market not be possible in all areas. Players need to carefully select areas for investment

Collaboration with technology players and competitors in new forms of partnerships will scale economies and present more available talent

Transforming employees' mindset – particularly in R&D, procurement, partner management and controlling – will be key for innovation

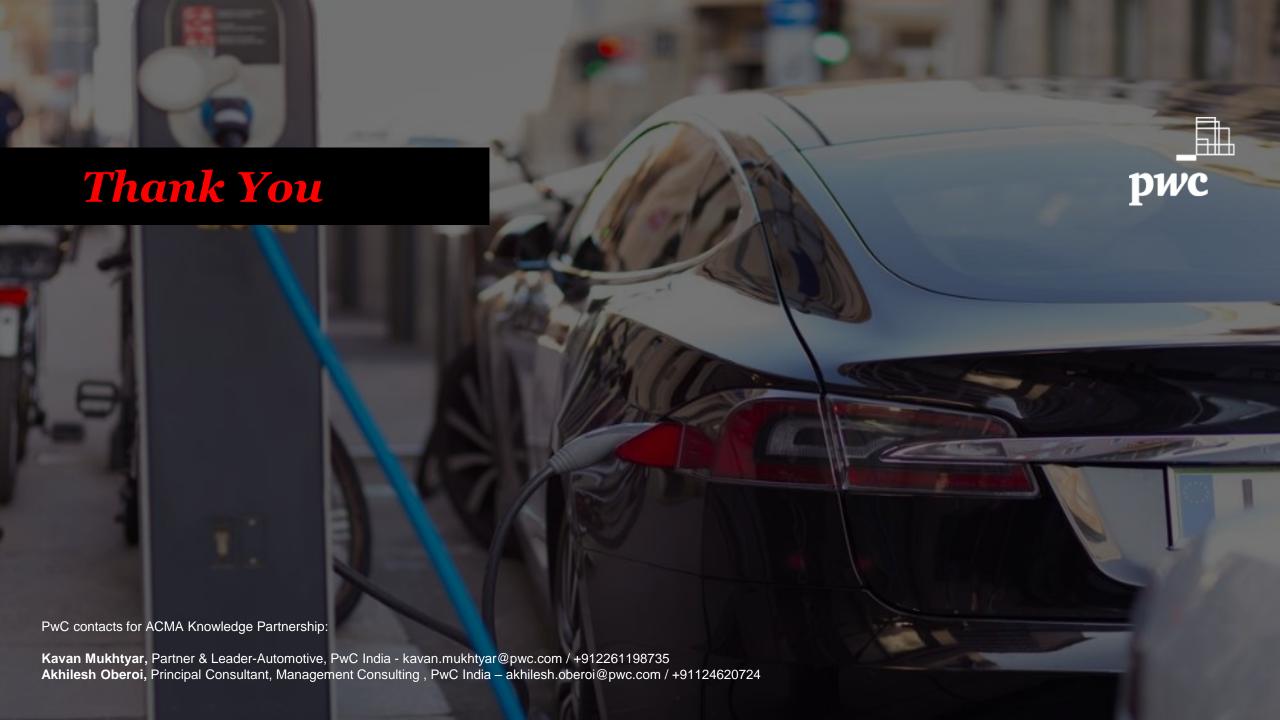
Contents

Overview of the Global EV market


Overview of the Indian EV market

Opportunities for auto-component manufacturers

Conclusion & key takeaways


To play in the EV aftermarket, EV EoL & EV fleet services markets, component-makers must first focus on strategic sourcing decisions

Sourcing Strategy Matrix

- Component manufacturers will need to decide how they will source their solutions since developing in-house may not be possible financially or organizationally
- Strategic sourcing decisions need to focus on three factors:
 - Targeted differentiation matching the brand promise:
 - Perceived customer value
 - Competitive advantage
 - Monetization potential
 - II. Anticipated **complexity** of the product and technology:
 - Availability of products/alternatives
 - Maturity of technology & market awareness
 - Availability of skilled/ experienced resources
 - Forecasted expenses
 - **III.** Sustainability of the targeted differentiation:
 - Today's differentiating assets might become commodities in 5 years
 - Significant reduction of complexity and risk for 2nd mover
- Collaboration with automotive and technology players should be favored for areas with high complexity

Source: Strategy&, PwC Research & Analysis

